TL Consulting Group

data

Key Considerations When Selecting a Data Visualisation Tool

Data visualisation is the visual representation of datasets that allows individuals, teams and organisations to better understand and interpret complex information both quickly and more accurately. Besides considering the cost of the tool itself, there are other key considerations when selecting a data visualisation tool to implement within your business. These include: Identifying who are the end-users that will be consuming the data visualisation What level of interactivity, flexibility and availability of the data visualisation tool is required from these users?   What type of visualisations are needed to fit the business/problem statement and what type of analytics will drive this?  Who will be responsible for maintaining and updating the dashboards and reports within the visualisation tool? What is the size of the datasets and how complex are the workloads to be ingested into the tool? Is there an existing data pipeline setup or does this need to be engineered? Are there any requirements to perform pre-processing or transformation on the data before it is ingested into the data visualisation tool? The primary objective of data visualisation is to help individuals, teams and companies explore, monitor and explain large amounts of data by organizing and allowing for more efficient analysis and decision-making by enabling users to quickly identify patterns, correlations, and outliers in their data.  Data visualisation is an important process for data analysis and other interested parties as it can provide insights and uncover hidden patterns in data that may not be immediately apparent through either tabular or textual representations. With data visualisation, data analysts and other interested parties such as business SMEs can explore large datasets, identify trends from these datasets, and communicate findings with stakeholders more effectively.      There are many types of data visualisations that can be used depending on the type of data being analysed along with the purpose of the analysis. Common types of visualisations include graphs, bar charts, line scatter plots, heat maps, tree maps, and network diagrams.  For data visualisation to be effective, it requires careful consideration of the data being presented, the intended audience, and the purpose of the analysis. The visualisation that is being presented should be clear, concise, and visually appealing, with labels, titles, and colours used to highlight important points and make the information more accessible to the audience. The data visualisation needs to an effective storytelling mechanism for all end-users to understand easily. Another consideration is the choice of colours used, as the wrong colours can impact the consumers of the data visualisation and can impact visually impaired people (i.e., colour blindness, Darker vs Brighter contrasts as examples)  In recent years, data visualisation has become increasingly important as data within organisations continues to grow in complexity. With the advent of big data and machine learning technologies, data visualisation is playing a critical role in helping organisations make sense of their data, and become more data-driven with increased ‘time to insight’, as organisations facilitate better and faster decision-making.    Data Visualisation Tools & Programming Languages  At TL Consulting, our skilled and experienced data consultants use a broad range and variety of data visualisation tools to help create effective visualisations of our customer’s data. The most common are listed below:   Power BI is a business intelligence tool from Microsoft that allows users to create interactive reports and dashboards using data from a variety of sources. It includes features for data modelling, visualisation, and collaboration.  Excel: Excel is a Microsoft spreadsheet application and from a data visualisation perspective includes the capability to represent numerical data in a visual format.  Tableau: Tableau is a powerful data visualisation tool that allows users to create interactive dashboards, charts, and graphs using drag-and-drop functionality. It supports a wide range of data sources and has a user-friendly interface.  QlikView: QlikView is a first-generation business intelligence tool that allows users to create interactive visualisations and dashboards using data from a variety of sources. QlikView includes features for data modelling, exploration, and collaboration.  Looker:  Looker is a cloud-based Business Intelligence (BI) tool that helps you explore, share, and visualise data that drive better business decisions. Looker is now a part of the Google Cloud Platform. It allows anyone in your business to analyse and find insights into your datasets quickly.  Qlik Sense: Qlik Sense is the next-generation platform for modern, self-service-oriented analytics. Qlik Sense supports from self-service visualisation and exploration to guided analytics apps and dashboards, conversational analytics, custom and embedded analytics, mobile analytics, reporting, and data alerting.      In conjunction with the data visualisation tools listed above, there are a variety of programming languages using their various libraries that TL Consulting use in delivering outcomes to our customers that support not just Data Visualisation but also Data Analytics.  Python is a popular programming language that can be used for data analysis and visualisation. This can be done via tools such as Jupyter, Apache Zeppelin, Google Colab and Anaconda to name a few. Python includes libraries such as Matplotlib, Seaborn, Bokeh and Plotly for creating visualisations.  R is a programming language used for statistical analysis and data visualisation. It includes a variety of packages and libraries for creating charts, graphs, and other visualisations.  Scala is a strong statically typed high-level general-purpose programming language that supports both object-oriented programming and functional programming. Scala has several data visualisation libraries such as breeze-viz, Vegas, Doodle and Plotly Scala.  Go or Golang is a statically typed, compiled high-level programming language designed at Google. Golang has several data visualisation libraries that facilitate the creation of charts such as pie charts, heatmaps, scatterplots and boxplots.  JavaScript is a popular programming language that is a core client-side language of the w3.  It has rich data visualisation libraries such Chart JS, D3, FusionCharts suite, Pixi etc.      Conclusion In conclusion, there are several data visualisation tools and techniques available in the market. For organisations to extract meaningful insights from their data in a time-efficient manner, it’s important to consider these factors before selecting and implementing a new data visualisation tool for your business. TL

Key Considerations When Selecting a Data Visualisation Tool Read More »

Data & AI, ,

Building a Robust Data Governance Framework in 2023

In today’s data-driven world with accelerating advancements in Artificial Intelligence (AI) and advanced analytics, organisations play an important role in ensuring that the data they collect, store, and analyse is underpinned by a strong data governance framework. Embedding the right data governance framework is the enablement of an organisation’s data strategy which requires dedicated planning and strategic direction from various business & technical stakeholders and should be driven from the “top-down” rather than “bottom-up”. To achieve this, organisations should focus on defining their information and data lifecycle management, data relationships and classification, data privacy, data quality, and data integrity to become more competitive and resilient.  The key fundamental challenge for organisations is to embed data standardisation, data security & compliance horizontally across the enterprise, thereby eliminating silos with their own disparate ways of working. In addition, it’s important for organisations to align their data governance framework with their data lifecycle, business strategy and goals, enabling a more agile approach to accommodate the organisation’s current & future needs.   Data Governance Framework Best Practices As organisations collect more and more data points, it’s important to define the right standards, policies, controls, accountability, and ownership (roles & responsibilities). A data governance framework will ensure the organisation abides by these standards while ensuring data that is collected and stored is secure, with a focus on maintaining data integrity and data quality. Ultimately, the data that is consumed by end-users should enable informative, data-driven decisions to be made. A constant re-evaluation is recommended to ensure the organisation’s data governance program is modernised and caters to the latest advancements in data and technology. Prior to defining a data governance framework, a comprehensive data discovery should be performed across the business landscape to create a unified view. This would aid in establishing data governance across the following areas: Data cataloging of data relationships, data quality, and data lineage Data classification and sourcing Metadata definition (Technical and Enterprise metadata) Data compliance, security, and privacy Data analytics & engineering Data storage & sharing The following diagram is a high-level example of a data governance framework. This model should be aligned with the organisation’s data and information management lifecycle. The framework definition should be evaluated from a People, Processes & Technology/Tooling perspective considering data stewardship, efficiencies, data security & access controls, alongside standardised processes governing the technology and tools that facilitate the production, consumption, and processing of the organisation’s data. The following sections highlight a few key areas which the data governance framework should address: Alignment to the Organisation’s Cloud Strategy When uplifting the data governance program, another important consideration for organisation’s that are building technology solutions on Cloud is to define an integrated data governance architecture across their environments, whether it be hybrid or multi-cloud. Alignment to their cloud strategy can help in the following areas: Improve data quality with better management & tooling available around data cleansing and enrichment Build a holistic, unified view of the organisation’s data through discovery and benchmarking Gain higher visibility into data lineage and track data end-to-end from source to target Build more effective data catalogs to ensure it benefits organisational needs to search and access the right data when needed Proactively review, monitor, and measure the data to ensure data consistency and data integrity is preserved For example, Microsoft offers an Azure Governance service as a management and governance cloud solution that features advanced capabilities to help manage data throughout its entire IT lifecycle and track data flows end-to-end, ensuring the right people have access to reliable, accurate data they need, whenever they need it. Data Privacy & Compliance As organisations continue building insights and implementing advanced analytics to learn more about their customers and create more tailored experiences, protecting sensitive data attributes including Personal Information (PI) should be at the heart of the organisation’s data security & data privacy practices, as part of their data governance framework. With the rise of cyber-attacks & data breaches, organisations should consider implementing data obfuscation techniques to “mask” or “encrypt” their PI source data, especially across non-production environments where the access controls are considered weaker than production environments, and the “internal” threat can be considered just as high as the external cyber threats. Applying data obfuscation techniques would ensure the PI data attributes are de-sensitized prior to their use in development, testing and data analytics. In addition, organisations should ensure data controls & access policies are reviewed more frequently than ever. Understanding who has access to the underlying data sources and platforms will help organisations maintain a good risk posture and should be assessed against their data governance framework, across their environments whether on-premise or on Cloud. Augmented Analytics & Machine Learning Without advanced analytics, data loses a lot of its usability and power. Advanced analytics combines the power of machine learning and artificial intelligence to help teams make data-driven decisions based on in-depth insights. Advanced analytics tools greatly streamline the data analysis process and help to provide a competitive edge, uncovering patterns and insights that manual data analysis may overlook. With the introduction of open-source machine learning models such as Open AI’s ChatGPT, how do organisations ensure the data that is collected, analysed, and presented is highly accurate and high quality? Depending on the data models & training algorithms used, these insights can be deeply flawed and it’s important for organisations to embed the right data governance policies around the use of open-source data models, including the collection, use, and analysis of the data points collected. A few roles that data governance plays in the world of augmented analytics, machine learning, and AI include: Providing guidance on what data is collected and how it’s used to train and validate data models for machine learning models to generate advanced analytics Providing standardization on the data science lifecycle and algorithms applied for generating insights, along with data cleansing & enrichment exercises Defining the best practices and policies when introducing new data models, along with measures to fine-tune and train models to increase data accuracy

Building a Robust Data Governance Framework in 2023 Read More »

Cloud-Native, Data & AI,